

Scytl iVote Voting System

Response to “NSWEC-10 Review of the Revised iVote 2021 System”

by David Hook and Carsten Schürmann, July 2021

September 2021

Final

Scytl iVote Voting System

Response to NSWEC-10 Final Report – September 2021

2

Scytl – Secure Election Technologies

© Copyright 2021 – SCYTL ELECTION TECHNOLOGIES, S.L.U All rights reserved.

This Document is proprietary to SCYTL ELECTION TECHNOLOGIES, S.L.U. (SCYTL) and is protected

by the Spanish laws on copyright and by the applicable International Conventions.

The property of Scytl’s cryptographic mechanisms and protocols described in this Document are

protected by patent applications.

No part of this Document may be: (i) reproduced whether direct or indirectly, temporary or permanently

by any means and/or (ii) adapted, modified or otherwise transformed., except for Free Uses of Works

exceptions according to Copyright International Treaties.

Notwithstanding the foregoing, the Document may be printed and/or downloaded.

Scytl iVote Voting System

Response to NSWEC-10 Final Report – September 2021

3

Table of contents

1 Introduction ... 4

2 Scope and Review Methodology (Part 2 of the Final Report) 6

2.1 Coverage info and lack of scanning tools .. 6

3 Functional Matching (Part 3 of the Final Report) ... 6

3.1 The Quality of the Documents Provided .. 6

3.2 Verifiability Analysis ... 7

4 Static Analysis (Part 4 of the Final Report) ... 15

4.1 Trusted Build.. 15

4.2 Analysis of SLOCcount Report .. 15

4.3 SpotBugs Static Analysis ... 15

Annex 1: PRNG Scytl ... 16

A1.1: Multiple browsers and multiple sessions ... 16

A1.2: The results of Dieharder .. 16

Scytl iVote Voting System

Response to NSWEC-10 Final Report – September 2021

4

1 Introduction

Reviewers from the DEMTECH GROUP (the Reviewers) performed a source code review in June 2021

on the new release of the iVote®1 voting system, as part of the planned security assurance processes.

This new release (1.8.5) is an evolution of the iVote voting system used in the 2019 state election. As

the Reviewers mentioned in their report, considerable effort has been made to reduce complexity of the

software and implement some of the improvements identified by the Reviewers on the source code

analysis made in 20192, as well as the findings detected in 2019 during the Swiss voting system source

code review that could affect the iVote voting system (reference [15] of the Reviewers report); and the

feedback received under the Scytl Online Voting Source Code Review Program following the 2019 State

election3. The Reviewers still see ways for improving the iVote voting system, as explained in the

document released after the last source code review: “Review of the Revised iVote 2021 System” dated

July 2021 by David Hook and Carsten Schürmann (the “Final Report”).

In this document, Scytl provides additional information and future considerations to the

recommendations given by the Reviewers, as we did with the previous report released in 2019. The aim

of this document is to complement the Reviewers analysis and recommendations with technical

responses, to help the reader to better understand the context of the recommendations. As in the 2019

response, Scytl intends to assist with the readability and assessment by dealing with the topics relevant

to Scytl in the same order as presented in the Final Report.

The feedback gathered from the Reviewers is valuable and useful for the improvement of the iVote

voting system and Scytl’s software, and can enrich areas such as the source code and technical

documentation, whilst noting that these must be taken into account within the context of the contract

between Scytl and its customer; the NSW Electoral Commission (NSWEC). The findings of the

Reviewers and outcomes of this response will continue to be considered by Scytl during the ongoing

development process as part of a continuous improvement program for Scytl’s software.

1 iVote is a registered trademark of the NSW Electoral Commission; the registration symbol will not be used throughout the rest
of this document.
2 “NSWEC-7 Final Report” by David Hook and Carsten Schürmann, January 2019
3 Review of the attack described in the report “Faking an iVote decryption proof” by Vanessa Teague, Associate Professor, dated
October 2, 2019.

Scytl iVote Voting System

Response to NSWEC-10 Final Report – September 2021

5

Report summary:

In Scytl’s opinion, whilst the Final Report did find areas of interest and discussion for both the Reviewers

and Scytl, nothing significant was found relating to the security and integrity of the system.

As the Reviewers mentioned in the Final Report, a significant effort has been made to reduce the

complexity of the 2019 voting system, address vulnerabilities and continue to manage existing risks.

As an extension of the prior report, Scytl acknowledges that areas of the code remain somewhat difficult

to review and were challenging for the Reviewers, as detailed specifications are not implemented in a

traditional document format, but are in fact tracked within the capabilities of Scytl’s internal Jira system.

As the iVote voting system is based on Scytl’s generic voting system (Invote), this does complicate the

review process, given that Invote’s code contains functionalities that are not used by iVote voting system

but by other electoral systems also supported by Invote. These can be seen in the codebase, whilst not

actually being called at runtime due to the product-based approach taken by Scytl. For this reason, it is

important to identify which functionality is actually used by the iVote voting system at runtime.

Scytl’s management of code is an ongoing activity, and a significant task given the size and complexity

of the Invote/iVote source code required to deliver the extensive capabilities of a secure online voting

system. Other matters raised by the Reviewers are described in the response herein.

Scytl iVote Voting System

Response to NSWEC-10 Final Report – September 2021

6

2 Scope and Review Methodology (Part 2 of the Final Report)

Reader note: The text contained in text boxes within this section is quoted from the Final Report.

2.1 Coverage info and lack of scanning tools

Due to the lack of good code scanning tools for JavaScript, no automated code scanning

analysis for JavaScript APIs was conducted.

Some information which affects the ability to properly assess the quality of the software has

been unavailable. The Vendor has not provided meaningful coverage information, despite

request. The absence of information contributes to a lack of transparency that makes it

impossible to asses the overall quality of the software.

Scytl’s response:

Scytl provided the coverage for the plugins used in the iVote voting system and the coverage that is run

in the base voting system product Invote, from where the iVote voting system takes the voting protocol.

However, we agree with the Reviewers that there is still margin for improvement in the JavaScript

plugins.

3 Functional Matching (Part 3 of the Final Report)

3.1 The Quality of the Documents Provided

We expected that the files included in the source code drop would give us sufficient information

(1) to serve as design documents and (2) to provide us with enough information on how the

different software modules interact. Unfortunately, this was not the case. When we reviewed

the Interface specification [9], we found it to be under-specified and incorrect. For example,

Figure 1 in [9] gives a good overview over eleven modules that define iVote. The document

explains some of the interfaces, but not all. In the figure, interfaces for the voter portal and the

verification app are depicted, but they are not explained in the body of the document. Some of

the arrows in the figure carry different identifications than those used in the body of the

document and some were not explained at all. In addition, there is no direct matching between

Figure 1 and the implementation.

For some modules, no documentation was provided, for example the inVote system, an

integrated solution developed and provided by the Vendor for organization public and private

elections. When asking the Vendor for additional information, we were informed that it was

unavailable. From the logs supplied with the source code, we learned that inVote’s

Scytl iVote Voting System

Response to NSWEC-10 Final Report – September 2021

7

development originated around 2006, but modules for iVote were only added in November

2019.

Scytl’s response:

Documentation provided to the Reviewers contained the overall iVote voting system specifications, but

it did not contain implementation details. Detailed specifications are not available in a standard

document format, as it is introduced directly in our software development management tool (Jira). Scytl

understands that this does not help the review process, as it requires the Reviewers to have access to

the Scytl Jira system in addition to the specification documents.

Regarding the history of the Invote voting system, it began in 2006, though there was also an earlier

version in 2001. The earlier version (Pnyx.core) was based on C/C++ and Invote is the Java evolution

of this voting system. The presence of references to older versions is normal considering that we are

maintaining some backward compatibility with previous versions.

Scytl’s product has advanced over many projects, evolving from the original Pnyx.core, and into sVote

and then Invote, upon which the current release of the NSW-customised iVote voting system is based.

In 2014-15, iVote voting system was developed as a standalone product, building on Scytl’s core

building blocks; the version the Reviewers have seen in their prior review. Following that time, NSWEC

expressed an interest in moving towards a standard product, albeit with customisations to suit the NSW

electoral model, which pushed Scytl into developing the iVote voting system on the Invote product line.

Recommendation: The Vendor should supply additional documentation for inVote.

Scytl’s response:

Scytl takes note of the recommendation. Within our development process, specifications are written as

documents, however we record the implementation details within our Jira system.

3.2 Verifiability Analysis

3.2.1 Complexity

Scytl’s general comment regarding complexity:

As the Reviewers mentioned, Scytl has reduced the code’s complexity compared with the previous iVote

voting system version, though we agree that there is still work to do. Our goal in general is to reduce

code duplication and unify dependencies where possible, which is balanced against the time and testing

requirements that exist as a normal part of project delivery.

Scytl iVote Voting System

Response to NSWEC-10 Final Report – September 2021

8

Recommendation: The build of the nsw-ivapi.min.js should be simplified to make it possible for

reviewers to generate a file without duplication.

Scytl’s response:

Scytl takes note of this recommendation.

The nswec_govlab module:

This module contains the source code of the inVote framework that is a central part of the iVote

system.

Nswec_govlab_1_3_0-RC2

nswec_govlab_1_3_1

We observe that two Java files, and multiple POM files are different. A POM file captures the

dependencies of modules on other modules and/or libraries. Two files are updated,

NSWImportVotersAndVotes.java

CsvManagerJdbcDao.java

and the differences in both cases appear to be meaningful. Which govlab module is in use?

Scytl’s response:

There are independent components implemented at different moments, so there are cases in which

these modules are built on different versions of the software. In this case, nswec_govlab_1_3_0-RC2 is

only used in the invote-receipt-admin module, and the updated classes are used in other modules. The

RC2 dependency is present for this reason, as a future release of the receipt admin module is expected

to include an upgrade to the latest version of nswec_govlab.

The cryptolib module:

The library that implements the basic cryptographic operations, cryptolib,

cryptolib_2_4_1

cryptolib_2_7_2

show substantial differences. The only module depending on 2.7.2 is the secure logger.

Assuming that 2.7.2 is more recent than 2.4.1, we wonder why doesn’t the entire iVote system

use the latest release? Is the 2.4.1 release still maintained?

Scytl iVote Voting System

Response to NSWEC-10 Final Report – September 2021

9

Scytl’s response:

This case is similar to the one before: different modules were implemented at different times and have

dependencies to different versions of the same library. This does not mean that there is a maintenance

problem as the cryptolib is an internal library, and therefore maintenance is under our control rather than

dependent on third parties. In this case, an update was not done as there were no critical issues with

the cryptolib functionality used by iVote voting system. Only the Secure Logger is using it because it

was implemented later in the development life cycle. Future Invote releases will continue to update the

cryptolib version as required in a supported manner.

The jbasis_cryptolib module:

Also the jbasis_crypto library appears at different versions and levels of maturity.

jbasis_crypto_4_1_0

jbasis_crypto_4_2_1

jbasis_crypto_4_2_1_3

jbasis_crypto_4.3.1

In this case jbasis_crypto_4_1_0 and jbasis_crypto_4_2_1 appear largely the same, while a

diff shows substantial differences they appear to be due to a change of formatting.

jbasis_crypto_4_2_1_3 has a couple of differences from jbasis_crypto_4_2_1 and also

includes git conflict messages in the source code indicating a failed merge. The differences

between 4_2_1 and 4_2_1_3 appear to be in the XML parsing. jbasis_crypto_4.3.1 appears to

add some use of generics with further formatting changes and a change to the method for

outputting certificate PEM files but appears to be missing the XML changes from 4_2_1_3.

Each module appears to be used at least once. In post election maintenance, the modules

need to properly reviewed and the divergence that seems to have happened in 4_2_1_3

resolved.

Scytl’s response:

Scytl agrees with the Reviewers that there should be a unified version of cryptolib, and has begun

working on this, though there are still modules to migrate. Migration priority has been given to modules

where migration has been prioritised to resolve potential issues. Scytl continues to work on the

remaining modules.

Scytl iVote Voting System

Response to NSWEC-10 Final Report – September 2021

10

The p7_cms module:

These modules are duplicates that appear at different version numbers and levels of maturity.

p7_cms_1_2_0

p7_cms_1_5_1

p7_cms_1_5_1_1

1.2.0 is substantially different from 1.5.1, 1.5.1.1 uses the latest version of the Bouncy Castle

crypto library. It is also concerning the 1.5.1 is still in use with invote

plugin_counting_tally_1_4_3_1, invote_plugin_counting_mixing_1_4_2_1 and

invote_plugin_counting_cleansing_1_4_2_1, as it overrides the choice of Bouncy Castle to use

bcmail 1.55, which is well out of date. This last issue is also concerning as the resolution of the

transitive dependency on bcmail 1.55 during building may override the parent dependency on

BC 1.68 resulting in the use of bcprov 1.55 which is also subject to a number of CVEs. 1.2.0 is

well out of date and should not be present at all.

The scytl_math module:

scytl_math_1_0_1

scytl_math_1_1_0

The 1.1.0 adds two new methods to Bigintegers "class". We could not identify any other

meaningful changes, which seems to suggest that 1.0.1 is unnecessary. Why 1.0.1 is present?

The nsw_commons module:

nsw_commons_lib_1_7_2

nsw_commons_lib_1_7_4

Differences appear to be related to the POM files. The Java source files are different only in

the context of the copyright notice which has been updated from 2020 to 2021.

Scytl’s response:

The duplication of these modules poses no risk to the iVote voting system, though future releases could

address further complexity reduction.

Scytl iVote Voting System

Response to NSWEC-10 Final Report – September 2021

11

Recommendation: The source code should be further simplified

Scytl’s response:

As mentioned by the Reviewers, there has been considerable work done to reduce complexity by

reducing the amount of modules, and it is accepted that there is further opportunity for simplification.

Scytl sees value in reducing the complexity of the code in new releases, so that dependencies are

unified to a single version of the same library for the modules that are using it. Scytl also notes that the

product continues to be developed over time with the competing needs of including updated

functionalities whilst maintaining compatibility.

The examples given by the Reviewers in this section are related to the fact that different modules are

implemented at different moments and are therefore linked to the specific version of the library available

at the time that it was implemented or updated. For this reason, they found that different versions of the

same library were present on different modules having dependencies to the same library. Priority is

given to migrating modules that address potential issues. This work is ongoing.

3.2.2 Explicit Erasure of Votes

Recommendation: The Vendor has responded [16] that all naked SQL calls can be regarded

as safe or as dead code. If the code is dead code it should be elimintad by the Vendor in future.

Scytl’s response:

As the Reviewers mention in the recommendation, in our response related to this matter [15] and [16]

Scytl has explained why there are queries that allow the deletion of information: these are only present

in the voting system configuration back office as part of the functionality used by election managers to

maintain and decommission election data (i.e., these queries are not present in the voting portal). Scytl

also provided responses to the four questions raised in this section as follows:

Transaction management:

Transaction management is implemented at the service layer, as the service layer encapsulates and

implements the business logic and is therefore the layer that performs the functional requirements of

the system. When the business logic requires interaction with different entities and data sources (e.g.,

different tables in a database), the service layer ensures that there is an atomic transaction to avoid

data inconsistencies among the differing data repositories, in the event that one transaction fails at the

persistence layer (ie: upon SQL query execution).

Scytl iVote Voting System

Response to NSWEC-10 Final Report – September 2021

12

This implementation removes the risk of inconsistencies due to transactions being improperly managed,

such as in the case of a naked SQL failure.

Verifiability:

To allow detecting the deletion of any vote if any queries are executed, a verifiability strategy has been

implemented in the voting system, which takes into account the following three main objectives: log

relevant data transactions to allow a complete review of the election (completeness), protect the log

information from manipulation (immutable logs) and provide individual verifiability means to voters

(voting receipts). These measures do not prevent deletion but ensure that if a deletion occurs, it can be

detected. Prevention is based on access control and security controls implemented at the infrastructure

level (e.g., firewalls, HIDS, hardening, physical isolation, network segmentation, separation of duties,

backups…).

Misuse of functionality:

The functionality behind these queries exists so that it can be used only by election managers when

configuring and decommissioning election events in the back-office component of the voting platform. If

an attacker is one of these election managers, they could misuse their privilege for example by executing

a decommission of the voting system, however as has been described earlier, this action cannot be

hidden and can be detected.

Thread session:

As mentioned in our response, getSession() performs a null check to guarantee that the sessionFactory

is not null, and only get the session when it is not. Therefore, there is no risk that the SQL command

fails because it is executed when there is a session failure, which would open the door to

inconsistencies.

Whilst the Reviewers consider the presence of naked SQL a concern, the existence of this code is

carefully considered to ensure transaction safety and ensure that any misuse by election managers can

be detected.

Scytl iVote Voting System

Response to NSWEC-10 Final Report – September 2021

13

3.2.3 Key Generation and Randomness

Recommendation: In future, it must be possible to build the minified JavaScript as part of the

review process. The Vendor should investigate the causes of duplication and eliminate them

where possible.

Scytl’s response:

The main PRNG code has not been changed as it is considered stable and no major changes were

required. Scytl provided the old entropy test results to the Reviewers since they were still valid. In

addition we are attaching the recent results we obtained in an annex to this document, to confirm there

are no changes.

Additionally, we would like to clarify that our Javascript PRNG is not used to create keys but only to

generate randomness for the ElGamal encryption component.

Regarding instructions for building a minimised version of JavaScript, we will consider them as a future

improvement for external review processes. Scytl’s review of coding practices is an ongoing activity.

3.2.4 Unused Code

Recommendation: The source code must be refactored and all unused modules and

functionality removed. Any production build should only be based on the cleaned code.

Scytl’s response:

Scytl takes note of this recommendation, however, due to the product nature of the iVote voting system,

this recommendation does not align entirely with other implementation priorities of the system or Scytl.

Scytl will review this recommendation with our customer to decide on the preferred approach.

The basis of the iVote voting system is our generic voting system, Invote, which implements several

capabilities to allow a more complete configuration of different election types and cryptographic protocol

properties. This provides both benefits and constraints, as using more generic components allows

customers to take advantage of new capabilities of the voting system, but will also add unused code if

these capabilities are not used. This does not automatically justify classification as a security risk in

Scytl’s view as the functionalities are not used, however it does make source code review of the system

more complex.

Scytl iVote Voting System

Response to NSWEC-10 Final Report – September 2021

14

3.2.5 Missing Contracts and Invariants

Recommendation: The Vendor should add contracts to all methods that define the iVote

system.

Scytl’s response:

Coding guide-lines are currently under review and updates will address this concern. Historically Scytl

has not required contracts for all implemented methods and assessing this will be part of the coding

review. The coding review is expected to be completed for end Q1-2022, and the outcome will be

shared with NSWEC.

3.2.6 Passwords

Recommendation: All unnecessary functionality must be removed from the source code.

Scytl’s response:

Scytl agrees with the reviewers regarding the benefit in reduction of presence of code that is not used,

and as noted by the reviewers some effort has been already done in this direction. Scytl notes that the

potential attack mentioned by the auditors due to the presence of an optional password component is

not feasible. This optional password component (password) is not present as an alternative

authentication mechanism to the other authentication components (ivote number and pin), but as an

additional optional complement to them. For instance, it can be used to request a third secret from the

voter, such as a personal challenge or a one-time password as used in some systems. Therefore, it is

not possible to disable any of the other two mandatory credentials (ivote number or pin) to make an

attack (despite it has a hardcoded value when this third authentication component is requested),

because the other two are always needed (ie: only iVote number and pin are used in the transform

function used to retrieve and decrypt the key container that has the digital certificate that allows the

casting of a valid vote).

3.2.7 Hardcoded Passwords

Recommendation: The hardcoded passwords should be removed from the source code.

Scytl’s response:

Scytl agrees that production passwords should not be included in source code, and Scytl has found that

they are not. The passwords found are passwords used in development environments and they are

Scytl iVote Voting System

Response to NSWEC-10 Final Report – September 2021

15

completely non-functional in a production implementation and cannot be used in any way – in a

production environment passwords are stored in secure password vaults.

4 Static Analysis (Part 4 of the Final Report)

4.1 Trusted Build

Recommendation: NSWEC should have access to the original source, for example, a git

repository, and should be able to build the production iVote system from scratch.

Scytl’s response:

The original source code is accessible for review purposes. Extending the access for other purposes is

a contractual matter between Scytl and the NSWEC.

4.2 Analysis of SLOCcount Report

Scytl response:

Scytl takes note of the Reviewers’ comments to reduce code duplication. Please refer to the response

to section 3.2.1 - Complexity.

4.3 SpotBugs Static Analysis

Recommendation: We would recommend the NSWEC review the SpotBugs report with the

Vendor, paying particular attention to concurrency issues and invalidated servlet parameters,

and patch where possible. Testing should also be done to with faulty, invalid, and out of range

servlet parameters to ensure the system deals with them gracefully.

Scytl response:

Scytl is open to working with our customer on automated reporting-based approaches to software bug

management. As the Reviewers mentioned in the Final Report, the concurrency issues reported in

Spotbugs are likely to be false positives, so Scytl’s focus is typically to carry out performance tests. If

these tests are successful, in general, we do not expect possible concurrency issues.

Regarding the use of faulty, invalid, and out of range parameters, Scytl will evaluate the impact of using

fuzz testing tools in the system development environment and communicate this with the NSWEC.

Scytl iVote Voting System

Response to NSWEC-10 Final Report – September 2021

16

Annex 1: PRNG Scytl

A1.1: Multiple browsers and multiple sessions

This test validates the sum of outputs from several cryptolib js PRNGs created from different browsers.

The tests’ rationale is to demonstrate that the data produced by all the PRNGs is completely different

and uncorrelated even when different instances and browsers are used.

In total there were 14 sessions for each browser with around 350 MB of random data produced per

session. The browsers used were:

• Firefox 72.0.2

• Chrome 79.0.3945.130

• Edge 79.0.309.71

• Opera 66.0.3515.44

A1.2: The results of Dieharder

These are the results of last random quality test done on July 2021 using the Dieharder tool on the

Javascript PRNG and data data entropy collector implemented in Invote and used by iVote voting

system.

#===#

dieharder version 3.31.1 Copyright 2003 Robert G. Brown #

#===#

 rng_name | filename |rands/second|

 file_input_raw| joined.dat | 1.29e+07 |

#===#

test_name ntup tsamples psamples p-value Assessment
diehard_birthdays 0 100 100 0.42278 PASSED
diehard_operm5 0 1000000 100 0.992412 PASSED
diehard_rank_32x32 0 40000 100 0.443462 PASSED
diehard_rank_6x8 0 100000 100 0.993152 PASSED
diehard_bitstream 0 2097152 100 0.274582 PASSED
diehard_opso 0 2097152 100 0.686947 PASSED
diehard_oqso 0 2097152 100 0.728511 PASSED
diehard_dna 0 2097152 100 0.74323 PASSED
diehard_count_1s_str 0 256000 100 0.169253 PASSED
diehard_count_1s_byt 0 256000 100 0.95291 PASSED
diehard_parking_lot 0 12000 100 0.979382 PASSED
diehard_2dsphere 2 8000 100 0.03963 PASSED
diehard_3dsphere 3 4000 100 0.265687 PASSED
diehard_squeeze 0 100000 100 0.84385 PASSED

Scytl iVote Voting System

Response to NSWEC-10 Final Report – September 2021

17

diehard_sums 0 100 100 0.419213 PASSED
diehard_runs 0 100000 100 0.482744 PASSED
diehard_runs 0 100000 100 0.818143 PASSED
diehard_craps 0 200000 100 0.889763 PASSED
diehard_craps 0 200000 100 0.376657 PASSED
marsaglia_tsang_gcd 0 10000000 100 0.389574 PASSED
marsaglia_tsang_gcd 0 10000000 100 0.469853 PASSED
sts_monobit 1 100000 100 0.042662 PASSED
sts_runs 2 100000 100 0.803625 PASSED
sts_serial 1 100000 100 0.354823 PASSED
sts_serial 2 100000 100 0.341664 PASSED
sts_serial 3 100000 100 0.280517 PASSED
sts_serial 3 100000 100 0.955434 PASSED
sts_serial 4 100000 100 0.848816 PASSED
sts_serial 4 100000 100 0.192911 PASSED
sts_serial 5 100000 100 0.221315 PASSED
sts_serial 5 100000 100 0.988523 PASSED
sts_serial 6 100000 100 0.180215 PASSED
sts_serial 6 100000 100 0.12133 PASSED
sts_serial 7 100000 100 0.977024 PASSED
sts_serial 7 100000 100 0.654789 PASSED
sts_serial 8 100000 100 0.98076 PASSED
sts_serial 8 100000 100 0.935927 PASSED
sts_serial 9 100000 100 0.911053 PASSED
sts_serial 9 100000 100 0.630347 PASSED
sts_serial 10 100000 100 0.564345 PASSED
sts_serial 10 100000 100 0.829171 PASSED
sts_serial 11 100000 100 0.139839 PASSED
sts_serial 11 100000 100 0.106635 PASSED
sts_serial 12 100000 100 0.846064 PASSED
sts_serial 12 100000 100 0.406906 PASSED
sts_serial 13 100000 100 0.049023 PASSED
sts_serial 13 100000 100 0.606318 PASSED
sts_serial 14 100000 100 0.733359 PASSED
sts_serial 14 100000 100 0.971512 PASSED
sts_serial 15 100000 100 0.56105 PASSED
sts_serial 15 100000 100 0.803618 PASSED
sts_serial 16 100000 100 0.798243 PASSED
sts_serial 16 100000 100 0.72114 PASSED
rgb_bitdist 1 100000 100 0.825537 PASSED
rgb_bitdist 2 100000 100 0.106178 PASSED
rgb_bitdist 3 100000 100 0.976592 PASSED
rgb_bitdist 4 100000 100 0.986826 PASSED
rgb_bitdist 5 100000 100 0.885152 PASSED
rgb_bitdist 6 100000 100 0.557871 PASSED
rgb_bitdist 7 100000 100 0.54923 PASSED
rgb_bitdist 8 100000 100 0.232158 PASSED

Scytl iVote Voting System

Response to NSWEC-10 Final Report – September 2021

18

rgb_bitdist 9 100000 100 0.722286 PASSED
rgb_bitdist 10 100000 100 0.034189 PASSED
rgb_bitdist 11 100000 100 0.682904 PASSED
rgb_bitdist 12 100000 100 0.279668 PASSED
rgb_minimum_distance 2 10000 1000 0.437482 PASSED
rgb_minimum_distance 3 10000 1000 0.160192 PASSED
rgb_minimum_distance 4 10000 1000 0.900253 PASSED
rgb_minimum_distance 5 10000 1000 0.383807 PASSED
rgb_permutations 2 100000 100 0.337012 PASSED
rgb_permutations 3 100000 100 0.060314 PASSED
rgb_permutations 4 100000 100 0.497925 PASSED
rgb_permutations 5 100000 100 0.809984 PASSED
rgb_lagged_sum 0 1000000 100 0.110331 PASSED
rgb_lagged_sum 1 1000000 100 0.582097 PASSED
rgb_lagged_sum 2 1000000 100 0.757885 PASSED
rgb_lagged_sum 3 1000000 100 0.632589 PASSED
rgb_lagged_sum 4 1000000 100 0.73915 PASSED
rgb_lagged_sum 5 1000000 100 0.493763 PASSED
rgb_lagged_sum 6 1000000 100 0.893604 PASSED
rgb_lagged_sum 7 1000000 100 0.897801 PASSED
rgb_lagged_sum 8 1000000 100 0.265144 PASSED
rgb_lagged_sum 9 1000000 100 0.959314 PASSED
rgb_lagged_sum 10 1000000 100 0.33238 PASSED
rgb_lagged_sum 11 1000000 100 0.087148 PASSED
rgb_lagged_sum 12 1000000 100 0.281615 PASSED
rgb_lagged_sum 13 1000000 100 0.887862 PASSED
rgb_lagged_sum 14 1000000 100 0.819194 PASSED
rgb_lagged_sum 15 1000000 100 0.545132 PASSED
rgb_lagged_sum 16 1000000 100 0.883137 PASSED
rgb_lagged_sum 17 1000000 100 0.549478 PASSED
rgb_lagged_sum 18 1000000 100 0.436385 PASSED
rgb_lagged_sum 19 1000000 100 0.93481 PASSED
rgb_lagged_sum 20 1000000 100 0.979775 PASSED
rgb_lagged_sum 21 1000000 100 0.282879 PASSED
rgb_lagged_sum 22 1000000 100 0.047357 PASSED
rgb_lagged_sum 23 1000000 100 0.443598 PASSED
rgb_lagged_sum 24 1000000 100 0.044703 PASSED
rgb_lagged_sum 25 1000000 100 0.979771 PASSED
rgb_lagged_sum 26 1000000 100 0.817458 PASSED
rgb_lagged_sum 27 1000000 100 0.877601 PASSED
rgb_lagged_sum 28 1000000 100 0.46385 PASSED
rgb_lagged_sum 29 1000000 100 0.977621 PASSED
rgb_lagged_sum 30 1000000 100 0.495754 PASSED
rgb_lagged_sum 31 1000000 100 0.291066 PASSED
rgb_lagged_sum 32 1000000 100 0.720531 PASSED
rgb_kstest_test 0 10000 1000 0.733923 PASSED
dab_bytedistrib 0 51200000 1 0.898609 PASSED

Scytl iVote Voting System

Response to NSWEC-10 Final Report – September 2021

19

dab_dct 256 50000 1 0.630205 PASSED
dab_filltree 32 15000000 1 0.365178 PASSED
dab_filltree 32 15000000 1 0.421989 PASSED
dab_filltree2 0 5000000 1 0.286912 PASSED
dab_filltree2 1 5000000 1 0.407294 PASSED

dab_monobit2 12 65000000 1 0.532862 PASSED

	1 Introduction
	2 Scope and Review Methodology (Part 2 of the Final Report)
	2.1 Coverage info and lack of scanning tools

	3 Functional Matching (Part 3 of the Final Report)
	3.1 The Quality of the Documents Provided
	3.2 Verifiability Analysis
	3.2.1 Complexity
	3.2.2 Explicit Erasure of Votes
	3.2.3 Key Generation and Randomness
	3.2.4 Unused Code
	3.2.5 Missing Contracts and Invariants
	3.2.6 Passwords
	3.2.7 Hardcoded Passwords

	4 Static Analysis (Part 4 of the Final Report)
	4.1 Trusted Build
	4.2 Analysis of SLOCcount Report
	4.3 SpotBugs Static Analysis

	Annex 1: PRNG Scytl
	A1.1: Multiple browsers and multiple sessions
	A1.2: The results of Dieharder

