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Abstract. The Australian state of New South Wales (NSW) held their State Gen-
eral Election (SGE) on 28th March 2015. The iVote R© electronic voting system
was used at this election by eligible voters using telephones, smartphones or com-
puters. Some 283,669 electors cast their vote through the iVote system, which set
a new world record for the number of electors returning an electronic ballot for
a binding parliamentary election. iVote operated in conjunction with the current
paper system and by so doing strengthened the current system by providing two
independent voting channel’s which can be compared to identify if anomalies in
count data exist that may effect the electoral outcome. iVote used in 2015 election
followed from a previous system used at the preceding parliamentary election in
2011. The new system had the aim of improving voters’ confidence that their
preferences where captured and counted as they intended. This paper provides
an introduction to iVote used in 2015 and the underlying cryptographic voting
protocol.

Keywords: electronic voting, cryptographic protocol, vote privacy, cast-as-intended
verifiability.

1 Introduction

On the 28th March 2015 all New South Wales (NSW) electors were required
to vote at the State General Election (SGE). In this election a single candidate
was elected for each of the 93 Legislative Assembly (lower house) districts,
and 21 candidates for the state-wide Legislative Council (upper house). The
Council election was for half of the chamber’s 42 seats, the remaining seats
would be elected at the next election in 2019. The possibility to vote remotely
by electronic voting was provided for the second time at a general election by
the iVote R© system1, thus enabling eligible electors to vote remotely using any
suitable device or at official interstate venues. The iVote system was initially in-
troduced in 2011 and allowed voters to cast their votes using Dual-Tone Multi-
Frequency (DTMF) dialling over regular telephones or computers with suit-
able browsers and Internet access. iVote was initially implemented to satisfy the
needs of the Blind and Low-Vision (BLV) community, who had won a court
case which paved the way for the introduction of electronic voting. However,

1 “iVote System” is a registered trademark of the NSW Electoral Commission.
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the BLV community did not want a system which could only be used by them
so the legislation also enabled other disadvantaged electors to use the system,
for instance, those who live more than 20 km away from a polling place, those
that were out of the state on Election Day, and those that could not attend a
polling place due to a disability.

The motivation of the New South Wales Electoral Commission (NSWEC)
for the introduction of the iVote system in NSW was:

(a) To assist electors who would otherwise not be able to vote independently or
would have difficulty voting using existing channels.

(b) To assist electors who would, by virtue of location during the election pe-
riod, not otherwise be able to vote reliably.

(c) To maintain confidence in the electoral process outcomes by reducing sys-
temic errors for difficult to obtain or handle paper votes, improve counting
accuracy (i.e. reduce counting, transcription and transposition errors), and
to identify electoral anomalies by comparing electoral outcomes from two
separate voting channels.

As a result of the success of iVote at the 2011 election, the NSW Joint Stand-
ing Committee on Electoral Matters (NSWEC’s oversight body) supported the
use of an improved version of iVote at the SGE 2015. At the core of iVote 2015
there is a new cryptographic voting protocol that is described in this paper. This
design, through a combination of actions by the voter, NSWEC and third-party
auditors, provides the following properties:

– the confidentiality of the vote is preserved (vote privacy);
– an elector’s vote was cast as intended;
– all elector’s votes cast are included in the final results for the election (recor-

ded-as-cast, auditor verified);
– there is a reasonable probability all votes contributing to the election of can-

didates have not been mishandled or miscounted (alignment of voting pat-
terns between separate voting channels);

The two main innovations for iVote 2015 with respect to the previous system
are:

– voting options are encrypted at the voting terminal, thus offering end-to-end
encryption;

– guarantees the cast-as-intended and recorded- as-cast properties.

These properties enable any voter to verify that their vote was received with the
correct voter selections and was correctly recorded by the system.
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The rest of this paper is devoted to presenting the NSWEC iVote 2015 sys-
tem, its cryptographic voting protocol and data from the election. Section 2
gives an overview of iVote; while Sections 3 and 4 detail the Core Voting Sys-
tem, starting with the abstract workflow, followed by the cryptographic speci-
fication. Section 5 gives an account of the iVote use in the SGE election, and
Section 6 presents the conclusions. Additionally, Appendix A presents a brief
informal security analysis of some parts of the system; and Appendix B includes
the description of the Zero-Knowledge Proofs used in the protocol.

2 iVote 2015 architecture

iVote protocol as used in 2015 is an expanded version of that used used in New
South Wales in 2011. It offers three voting modes: remote DTMF phone voting,
remote Internet voting and in-remote-venue Internet voting. The two Internet
voting options use the same voting protocol, while DTMF phone voting uses a
public switch telephone network (PSTN) phone connection in place of the Inter-
net connection used for all other remote voting. The main difference between the
two Internet voting modes is that in-remote-venue Internet voting takes place in
a venue under the control of NSWEC, while remote Internet voting takes place
at any location. See Tables 1 and 2 in Section 5 for more details on the voting
types and devices used.

To understand some of the design choices behind iVote 2015, it is important
to note that in the view of Commission, the risk of voter coercion is considered
to be low in NSW [15]. Therefore coercion resistance is not a mandatory prop-
erty for iVote. Not having to deal with voter coercion is a feature of the electoral
process which gives the NSW Electoral Commission the opportunity to both
provide iVoters with preference2 receipts and publish all the preferences made
by voters after the election.

The publication of all preferences allows any person with the appropriate
skills to independently verify NSW’s complex distribution of preference pro-
cess without the need to review counting source code. The Commission believes
that the confidence the public gains through this process far outweighs the risks
associated with voter coercion. This is despite the NSW electoral process in-
trinsically giving voters infinite opportunity to enter a unique combination of
preferences, which could allow them to prove how they voted, NSW does not
consider this a significant issue.

iVote 2015 uses receipts from a verification component, called the Veri-
fication Server. This component allows voters to hear on any phone over the
PSTN, at any time during the election, their vote after entering a given voter’s

2 Preference is a number marked on a ballot paper indicating the order of election for candidates.
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unique credentials and voting receipt number. This gives voters the possibility
of checking that their votes have been received by the system according to their
intentions, and constitutes a defense against a potentially compromised voting
device (particularly when the phone used for verification is different to the vot-
ing device). Nevertheless, should a voter be coerced they can revote and by so
doing remove their original vote.

From the point of view of the voter, both with remote Internet voting and
in-remote-venue Internet voting, casting and verifying a vote involves the fol-
lowing steps (see Figure 1):

1. Voter registration: Electors register online or through the iVote registration
call centre. The voter introduces a PIN of their choice and, later, receives
an iVote Number through a channel different from that of registration. This
number and the PIN together constitute the voter’s secret credentials, and
will later be used to login into the iVote System and cast a vote in an election
event.

2. Vote casting: The voters cast their votes by logging into the iVote system
using either a computing device, including smartphones, or using a phone
capable of DTMF dialling over PSTN. When a vote is cast, it is encrypted
together with a receipt number randomly chosen, in the voter’s device for
Internet voting, or in the NSWEC servers for phone voting. After the vote
has been cast, the receipt number is provided to the voter, and it can be used
for a number of verifications. iVote uses checks that force receipt numbers
to be unique.

3. Cast-as-intended and recorded-as-cast verification: The voter can check,
up until the election closes, that their voting intent has been correctly regis-
tered by the system by calling the Verification Server. This server requests
the voter’s unique credentials (iVote Number and PIN), as well as the re-
ceipt number obtained after casting a vote. Then, the previously cast vote
is opened and the contained voting options are read aloud to the voter by
a text-to-speech server. Thus, the voter can verify the voting options read
match their original intent.

4. Vote decrypted verification: At the end of the election, the receipt num-
bers obtained from the decrypted votes are uploaded to the Receipt Number
Website. The receipt numbers allow the voters to check their votes were
included in the count by searching their receipt numbers in the mentioned
website, as they are unique per valid ballot.

The iVote ecosystem consists of three subsystems/processes, which are in-
dependently run, in order to distribute trust: first of all we find the Registration
system (developed, hosted and supported by NSWEC), next the Core Voting
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Fig. 1. Voter flow in iVote Core 2015 system



6 Ian Brightwell, Jordi Cucurull, David Galindo and Sandra Guasch

systems (developed and supported by Scytl, hosted by another contractor at
arms length to NSWEC) and finally the Audit and Verification processes (de-
veloped and supported by NSWEC contractor, hosted by separate contractor at
arms length to NSWEC). They are depicted in Figure 2, where different colors
mean only accessible by different, distrustful parties, who can testify that the
other party did not access certain systems.

3 The Core Voting Protocol - General Principles

We start by giving the cryptographic protocol workflow, and continue by giving
a formal description of its most relevant algorithms.

In iVote a key roaming mechanism is used to provide digital certificates to
voters when casting their votes. The digital certificate is protected by a secret
that is derived from the voter’s secret credentials. This secret is not stored in
a remote database and therefore cannot be accessed to impersonate the voter.
Because of the lack of space, we have omitted in this description the details of
the cryptographic primitives involved in the key roaming mechanism, as it is
common in most of the works in the literature on electronic voting [5, 8, 4].

iVote2015 is composed of several components (see Figure 2), which are
operated by different parties in order to decrease the chances that these compo-
nents fall under the control of a single entity. Using these components the main
procedures of the election are as follows:

– Election configuration: This step is devoted to generating the election cryp-
tographic keys, the servers’ keys, the voter keys and the election configura-
tion files. The election cryptographic keys use threshold cryptography tech-
niques, thus they are divided in shares that are stored in smartcards given
to the election representatives, i.e. to the Electoral Board. The generation
of cryptographic materials is performed by the Offline Voting Management
System, a component executed in an air-gapped server. Later, the public keys
and configuration produced are uploaded to the Online Voting Management
System, from which they are spread to the rest of the system.

– Voter registration: Voters register in the election using the Registration Sys-
tem by providing personal data, which is used to identify them as eligible
voters, and the voters’ secret PIN. After the final electoral roll (i.e. the list
of elegible voters that registered in iVote) is available, the Credential Man-
agement component allocates an iVote Number that, together with the PIN,
is linked to a pre-computed set of voter keys by the Ballot Controller com-
ponent. The Credential Manager, which manages the electors for a given
election event, will keep the electoral roll during the whole election. The
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Fig. 2. iVote architecture
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electoral roll links an actual voter with a unique unpredictable pseudony-
mous identity3 cryptographically derived from the iVote Number and PIN.
In that way, the Core Voting System is ignorant of the real identity of the
voter.

– Vote casting: The voter authenticates with the Vote Encoder by using its
iVote Number and PIN, and votes through the web or telephone using the
Web-Voting Client or the Voice-Voting Client, respectively. The Web-Voting
Client is used to vote through a computer, smartphone or tablet which is
implemented as Javascript code that runs in the browser of the voter’s de-
vice. The Voice-Voting Client is used to vote through a regular phone with
DTMF capability. It is a Java code that runs in a NSWEC server. The first
one encrypts the vote on the client-side, while the second one does it on the
server-side. In the following lines we describe the workflow behind casting
a vote (for the details see Section 4):

• Envelopes generation: The voting client generates two envelopes con-
taining the encrypted voting options: one is encrypted using the Elec-
toral Board’s public key (called envelope for counting), and the other
one is encrypted using the Verification Server public key (called en-
velope for verification). The reason for the existence of two different
envelopes is that they are decrypted differently: the envelope for count-
ing is decrypted using the election’s decryption key, while the enve-
lope for verification is opened by the voter on inputs its secret creden-
tials. These envelopes contain the encrypted Receipt Number. The vot-
ing client sends the hash of the Receipt Number to the Vote Encoder
so it can check the uniqueness of the hash against those associated with
the set of ballots. In the unlikely event that this Receipt Number hash
is not unique in the ballot database, the envelopes generation phase is
re-started anew.
• Proof generation: The voting client generates a set of non-interactive

zero-knowledge proofs (NIZKPs) to prove that:
∗ both envelopes, when decrypted, contain the same voting options,
∗ the ciphertexts have been freshly generated,
∗ the Receipt Number contained in the envelopes matches the hash

provided to the Vote Encoder.
• Vote casting: The two envelopes, the proofs and a hash of the Receipt

Number are sent to the Vote Encoder, which verifies the validity of the
envelopes and proofs, and the eligibility of the voter. This is done by
verifying a signature on the envelopes, which was computed by the vot-

3 Referred to as id in the formal description in Section 3.
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ing client using the voter’s keys that the Ballot Controller assigned (at
the registration stage) to the voter.

• Vote storage: The Vote Encoder forwards the second envelope to the
Verification Server, and stores the first envelope in a ballots’ database.
A control code calculated by the server is delivered together with the
receipt number to the voter.

– Vote verification: In order to verify the content of their vote, the voter
makes a phone call to an automatic system called Verification Server, pro-
viding their PIN and iVote number, together with the Receipt Number corre-
sponding to the voter’s ballot. With this information, the Verification Server
is able to locate and decrypt the envelope for verification, and reveal the
selected voting options to the voter. This service is not available once the
election is finished.

– Ballots export: Once the voting phase ends, the envelopes for counting and
the electoral roll are exported using the Online Voting-Management System
to the Offline Voting-Management System, which is located in an air-gapped
server.

– Cleansing: This operation validates the signatures of the ballots, authenti-
cation tokens proving the voters have legitimately authenticated themselves,
timing values associated to the ballots and the eligibility of the correspond-
ing voters. It also discards the votes that were cast with disabled creden-
tials (credentials are disabled, for example, if it has been detected they have
voted through another channel such as any vote which uses online mark-off
like pre-poll or a postal voting; votes taken in a polling places can not be
checked for mark-off as paper rolls are used currently). Finally, it separates
the votes from their pseudonyms, in order to protect the voter’s privacy at
the decryption stage.

– Decryption: The Electoral Board come together, reconstruct the private
election key, and decrypt the envelopes for counting using the Vote De-
coder component to obtain the cleartext voting options and Receipt Num-
bers. NIZKPs of correct decryption are generated to prove the correctness
of this process.

– Audit. The purpose of this procedure is two-fold:
• to ensure that the voting options decrypted match the encrypted voting

options in the Verification Server,
• to verify that the decryption process has behaved honestly by validating

the decryption NIZKPs.
This audit entails re-encrypting the decrypted votes obtained from the Vote
Decoder and comparing them with the ones stored in the Verification Server
(once any information on the voters’ pseudonyms has been removed). If
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there are mismatches, the decryption NIZKPs are validated in order to en-
sure the decryption was correctly performed.

– Publication of receipt numbers: The decrypted Receipt Numbers are up-
loaded to the Receipt Number Website for public inspection.

4 Core Voting Protocol - Formal description

We start by describing the cryptographic building blocks used in the protocol.
Next, we give the cryptographic protocol at the core of the iVote 2015 system.

4.1 Building blocks

We use the ElGamal IND-CPA cryptosystem in a given group G, where the
Decisional Diffie-Hellman assumption holds. This implies there exists efficient
product and exponentiation operations, prod : G×G→ G s.t. prod(g1, g2) :=
g1 · g2 and exp : G× Z→ G s.t. exp(g, x) := gx, respectively.

More specifically, we use the ElGamal’s multi-ciphertext variant [10]; an
authenticated symmetric encryption schemeAE = (Enc,Dec); a key derivation
function KDF that maps elements in G to one-time keys forAE ; an unforgeable
signature scheme S = (SKeyGen, Sign, SVerify); and several NIZK proof sys-
tems obtained through Maurer’s zero knowledge proofs unification framework
[13]. In the following lines we recall the syntax and main security properties of
each of these blocks.

Definition 1 (ElGamal with multiple ciphertexts). Let G = 〈g〉 be a cyclic
finite group, where g is a generator, and which has prime order q. The latter
implies that G = {1, g, g2, . . . , gq−1} as a set. The ElGamal cryptosystem with
multiple messages is given by a tuple E = (EG.Keys,EG.Enc,EG.Dec) defined
as follows:

– EG.Keys(G, n) picks x1, . . . , xn uniformly at random in Zq and sets h1 =
gx1 , . . . , hn = gxn . The public encryption key is pk = (g, h1, . . . , hn), while
the secret decryption key is defined as dk = (x1, . . . , xn).

– EG.Enc(pk,m1, . . . ,mn) for messagesm1, . . . ,mn ∈ G works a follows. It
picks r uniformly at random in Zq and outputs the ciphertextC = (c0, c1, . . . ,
cn) = (gr, hr1 ·m1, . . . , h

r
n ·mn).

– EG.Dec(dk, C) for a ciphertext C = (c0, c1, . . . , cn) outputs a tuple of n
messages in G by computing m1 = c1/(c

x1
0 ), . . . ,mn = cn/(c

xn
0 ).

It is easy to see that EG.Dec (dk,EG.Enc(pk,m1, . . . ,mn)) = (m1, . . . ,mn)
for a legitimate key pair (pk, dk). Additionally, it is difficult to derive any in-
formation on any individual message if only their mutiple-encryption is known.
Typical values of q are in the range ]2256, 2257[.
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Definition 2 (Authenticated Encryption). An authenticated encryption scheme
for a key space K = {0, 1}κ and initialization vector space {0, 1}τ is given by
a tuple AE = (Enc,Dec) defined as follows:

– EncK(m) on a key K ∈ K and bit-string m, picks a so-called Initialization
Vector IV uniformly at random in {0, 1}τ and outputs a ciphertext (IV, c).

– DecK((IV, c)) outputs a bit-string m or an error symbol ⊥.

Any authenticated encryption scheme satifies that DecK(EncK(m)) = m. Ad-
ditionally, DecK′(EncK(m)) =⊥ with high probability when K is random and
K ′ 6= K. A typical such encryption scheme is AES-GCM, with κ = 128 and
τ = 96.

For re-encryption purposes, EncIVK (m) stands for encrypting the message
m with a pre-existing fixed Initialization Value IV .

Definition 3 (Digital Signature). A digital signature scheme is given by a tuple
S = (KeyGen,Sign,Verify) defined as follows:

– KeyGen(λ) on input a security parameter λ outputs a signing key pair
(vk, sk).

– Sign(sk,m) on input a bit-string m outputs a signature σ.
– Verify(vk,m, σ) on input a message m and a given signature σ, outputs 1

if they match, and 0 otherwise.

Any digital signature scheme satifies that Verify(vk, Sign(sk,m)) = 1. Addi-
tionally, it is difficult to find a valid signature for a given message m and ver-
ification key vk without knowing the corresponding signing key sk. A typical
signature scheme is FDH-RSA with 2048 bit keys.

Definition 4 (Hash function). A hash function H mapping strings to natural
numbers in the interval [0, q − 1]. This means that:

– ComputingH(m) is fast for any bit-string m.
– Given onlyH(m) it is infeasible to recover m.
– It is difficult to find m1 6= m2 such thatH(m1) = H(m2).

Typical hash functions are SHA-256 and SHA-512/224.

4.2 iVote Core Voting Protocol - A Formal Description

Formally, the core iVote 2015 voting protocol can be described using eight al-
gorithms V iVote = (SetupEB,SetupV S ,Credential,Vote,Validate,VerifyVote,
Box,Tally,Verify) defined below:
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SetupEG(G) is run by the Electoral Board to create the election encryption
and decryption keys. Starts by calling the multiple-ciphertext ElGamal key
generator with n = 3. Next, chooses a random element f ∈ G. The out-
puts of this algorithm are the election encryption and decryption keys as
pkEB ← (G, q, h1, h2, h3, f,H,G,AE ,S) and skEB = (x1, x2, x3), re-
spectively. In the election public encryption key, the tuple (H,G,AE ,S)
stands for the hash functions, authenticated encryption and digital signature
concrete primitives to be used to encrypt a vote.

SetupV S(pkEG) is run by the Verification Server to create the verification en-
cryption and decryption keys. Calls the multiple-ciphertext ElGamal key
generator with n = 2. The outputs of this algorithm are the Verification
Server encryption and decryption keys as pkV S ← (G, q, h4, h5, f,H,G,
AE ,S) and skV S = (x4, x5), respectively.

Credential(pk, id) generates a signing key pair for each voter using as input
their pseudo-identity id. It outputs (upk, usk)← SKeyGen(1λ). The public
signing key upk is added to the electoral roll.

Vote (pk, id, upk, usk, v) is run in the voter’s device. This algorithm receives
as inputs voter’s pseudonym id and signing keys (upk, usk), and casts a
ballot b corresponding to vote v. The ballot construction is a randomized
procedure, which is initialized by choosing uniformly at random:

– K in the group G, from which a symmetric encryption key is derived as
K = KDF(K);

– RN , the receipt number4, from the natural numbers smaller that 1010;
– X , the Random eXtension, in the group G, to protect against the Vote

Encoder brute forcing the ballots to decrypt the vote preferences.

These values are used to create an envelope for counting and an envelope
for verifying as follows:

(i) Encryption of v ∈ V for counting:
1. Compute the symmetric encryption of v and ofRN as EncK(v) and

EncK(RN).
2. Compute a commitment to RN as α = fH(RN).
3. Compute a multiple ElGamal encryption, with the Electoral Board

encryption key, of K,H(RN ) and X :
– A = gr.
– B = hr1 · K.
– C = hr2 · gH(RN).

4 We note that the receipt number RN has ten decimal digits, since RN needs to be typed in a
phone by dialling, in order to verify a vote.
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– D = hr3 · X .
The envelope for counting (to be stored at the Vote Encoder), is:

Ccount = [EncK(v),EncK(RN), A,B,C,D] .

(ii) Computation of a multiple ElGamal encryption, with the Verification
Server encryption key, of X (the Random eXtension) and fH(RN) (the
commitment to RN ) :

– A = gr.
– E = hr4 · X .
– F = hr5 · fH(RN).

(iii) Computation of a one-time encryption of the pre-keyK, using gH(RN)

and X for the one-time key, as G = gH(RN) · X · K.
The envelope for verifying (to be stored at the Verification Server) is:

Cver = [EncK(v),EncK(RN), A,E, F,G] .

(iv) Proof generation for ensuring that the contents of the envelopes Ccount
andCver are consistent. For this purpose, the voting client generates five
zero-knowledge proofs5:

– π0: proves the knowledge of the randomness r, in order to ensure
plaintext independence.

– π1: proves that the product ofB, C,D (from the envelope for count-
ing) contains the encryption of G = gH(RN) · X · K (from the enve-
lope for verification).

– π2: proves that D (from the envelope for counting) encrypts the
same value than E (from the envelope for verification).

– π3: proves thatC (from the envelope for counting) encrypts the same
value committed in F (from the envelope for verification).

– π4: relates the receipt number used in the envelopes with its hash
valueH(RN) sent to the Vote Encoder.

(v) Sign the envelopes: σ1 = Sign(usk, Ccount||π0), σ2 = Sign(usk, Cver).
(vi) Cast the ballot b = (upk, Ccount, Cver, π0, . . . , π4,H(RN), σ1, σ2).

Validate(pkEB,pkV S , b) is run by the Vote Encoder to decide whether a ballot
b is valid. It performs several checks:

– the uniqueness of the receipt number through the implicit valueH(RN).
– the signatures and the cryptographic proofs are valid.
– the encryptions EncK(v),EncK(RN) appear in both envelopes.

5 Due to lack of space, we defer the reader to Appendix B for details of some of these proofs,
which are in any case only of interest to specialists.
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The successful verification of the proofs confirms that both envelopes would
result in the same preferences being decrypted, and that the receipt number
is unique in the ballots’ database.

Box(pk,BB, b, id) is run by the Vote Encoder to update the ballot database BB
with a valid ballot b. It parses ballot b as (upk, Ccount, Cver,
π0, . . . , π4,H(RN), σ1, σ2) and BB is left unchanged if upk is not a legiti-
mate verification key, or Validate(pk, b) rejects, or id has previously stored
a ballot in BB. Otherwise, it adds (id, upk, Ccount, π0, σ1) as a new entry to
BB and forwards (id, upk, Cver, σ2) to the Verification Server.

VerifyVote(pk, id, RN,Cver, skV S) is run by the Verification Server, which
is an automatic telephone service, that reads aloud the voting options that a
voter has cast to the ballot box database. When this algorithm is called, the
voter with pseudonym id has previously authenticated himself to the service
(by using his iVote number and PIN). The Verification Server decrypts, upon
the request by a voter with pseudonymous identity id, their corresponding
envelope Cver = [EncK′(v′),EncK′(RN ′), A,E, F,G], as follows:

(1) Decrypts the multiple ElGamal encryption (A,E, F ) from Cver, using
the decryption key skV S . Let us call the resulting plaintexts are δ and θ.

(2) Checks the validity of the receipt number RN provided by the voter,
by testing whether θ = fH(RN). If the comparison is not successful, an
error notification is provided to the voter, and the process is aborted.

(3) Recovers K from Cver using gH(RN) and δ, and let us call K =
KDF(K).

(4) Uses K to decrypt EncK(RN ′) and checks whether RN = RN ′. If
not, it provides an error notification.

(5) Finally, it uses K to decrypt EncK(v′) and uses the result to play the
audio rendition of the decrypted options to the voter.

Tally(pkEB,BB, skEB) is run by the Electoral Board to obtain the voting op-
tions contained in the ballot database. For each entry (id, upk, Ccount, π0, σ1)
in BB:

(1) Validates π0 and σ1 and discards the entry if any rejection occurs.
(2) Checks that upk does not appear previously in the BB, and that upk is

in the electoral roll. Discards the entry in case of any rejection.
(3) Parses Ccount as [EncK′(v′),EncK′(RN ′), A,B,C,D], and computes

the multiple ElGamal decryption of (A,B,C) using skEB , obtainingK
and gH(RN), and a proof π5 of correct decryption. Let K = KDF(K).

(4) Let v = DecK (EncK′(v′)) and RN = DecK (EncK′(RN ′)).
(5) Checks that gH(RN) = gH(RN). If not, discards v and RN .
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The following lists are provided as the output of this algorithm:

– a list Lv of the (valid) cleartext votes v;
– a list LRN of receipt numbers RN ;
– a list LA of tuples {IV, v,RN,K};
– a list LP of proofs of correct decryption π5;
– a list LC of envelopes that have caused any error.

An independent random permutation is applied to the elements in each list
before they are released. The goal is to remove, as much as possible, any
link between the list of votes and the list of envelopes for counting.

Verify(pkEB,pkV S ,BBV S , Lv, LRN , LA, LC) is run by the Auditors, to check
whether the ballots stored in the Verification Server database contain the
same list of voting options that was announced by the Electoral Board. The
following checks are performed:

(i) Consistency between the lists Lv, LRN , LA, LC output by Tally, and the
database BBV S of the Verification Server, is checked. Let the entries in
BBV S be in the format [EncK(v),EncK(RN), A,E, F,G]. Then:
1. For each entry {IV ′, v′, RN ′,K ′} ∈ LA, it computes the re-encryptions
{EncIV ′

K′ (v′),EncIV
′

K′ (RN ′)} and adds them to a list L
Ĉ

.
2. For each entry Cver in BBV S , it checks that the corresponding en-

cryptions (EncK(v),EncK(RN)) appear in list L
Ĉ

. Any pair of en-
cryptions (EncK(v),EncK(RN)) for which there is not such a cor-
respondence must appear in the list LC .

(ii) Correctness of the Tally algorithm:
1. For every entry K in LP , it checks that KDF(K) belongs to LA.
2. It computes gH(RN ′) using the sub-entries RN ′ from list LA, and

checks that the resulting values belong to list LP .
3. It verifies the proofs π5 from list LP using the corresponding values
K, gH(RN), A, B, C, and the public keys h1, h2.

An informal security analysis is given in Appendix A and helps understand-
ing the choice of some of the cryptographic building blocks of the protocol.

4.3 Comparison with Helios and Norwegian protocol

We proceed to a comparison of the cast-as-intended verification mechanisms of
iVote 2015 with those of Helios and the Norwegian voting systems [1, 7, 14].

Helios uses the immediate decryption mechanism [2], where the voter’s de-
vice encrypts a vote and the voter is allowed to challenge the encryption gen-
erated. In case they choose to challenge it, the device reveals the randomness
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which was used to encrypt the voting options. After auditing the challenged en-
cryption, the voting options are encrypted again with fresh randomness prior to
casting the vote, so that the voter cannot use the randomness provided for audit
as a proof to a third party of how they voted. This approach presents several
drawbacks, such as usability (this randomness is a rather large string, cumber-
some to be typed by a voter), and the fact that it does not allow for simple
verification (i.e. verification must be done using a secondary computing device,
under the assumption that at least one of the two devices is not compromised),
and has also an impact on the efficiency of the vote casting phase (a vote is
generally encrypted several times before casting).

The Norwegian protocol uses a different approach based on the so-called re-
turn codes [12, 11, 14]. In these proposals the voting client sends an encrypted
vote to the remote voting servers, where return codes are calculated and sent
back to the voter for verification. Voters possess a verification card where re-
turn codes are shown against matching voting options, and verification can be
made by rather simple visual inspection. More concretely, return codes are com-
puted from the probabilistic encryption of voting options, but at the same time
they have to be deterministic: during the voting phase, the values computed by
the server-side from an encrypted vote have to match those computed during the
verification card generation phase. Therefore, the randomness from the voting
options encryption has to be removed when computing the return codes, which
poses a serious risk on the vote secrecy. This was solved in the Norwegian voting
system [7, 14] by splitting the generation of the return codes in two independent
entities, which were assumed not to collude. This approach is technically com-
plex, and requires sending a verification card by postal mail to the voters (which
implies infrastructure and operational costs).

The approach followed in iVote 2015 does not suffer from these drawbacks
on efficiency, usability or infrastructure. Indeed, when a vote is cast, two dif-
ferent envelopes containing this vote are stored, in the Ballot Box (at the Vote
Encoder) and in the Verification Server, respectively. The envelope in the Ballot
Box can only be opened by the Electoral Board; while the envelope in the Verifi-
cation Server can be opened by the voter when they enter their secret credentials
and the random 10 digit receipt number. The simplicity of the iVote 2015 mech-
anism is due to the fact that coercion is not considered a real threat on the NSW
State General election, and thus the existence of a mechanism that allows voters
to recover their voting options during the lifetime of the election does not pose
a privacy breach. In contrast, the Helios and Norwegian cast-as-intended verifi-
cation mechanisms do not allow to retrieve the voter’s voting option until after
the end of the election, and thus the iVote 2015 approach does not comply with
their requirement.
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5 An account of iVote 2015 during the SGE 2015 election

Voters could register to use iVote 2015 from 12th February 2015 until about 2pm
ESDT Saturday 28th March 2015. Voters could cast their vote from 8am ESDT
Monday 16th March until 6pm ESDT Saturday 28th March 2015. Registration
could be done from a phone to an operator or through a supported web browser
(see Table 1).

Registration device
Registration method Std phone Smartphone Computer
Remote over Internet using browser X X

Remote over PSTN talking to operator X X ?

Table 1. Methods and devices used for registering to iVote in 2015 (? means the operator enters
the registration into a computer using a similar interface to electors registering over the Internet)

Voting could be done from both a phone to an operator or a phone with
DTMF capability or through a supported web browser on a smartphone or desk-
top/laptop (see Table 2).

Voting device
Voting method Std phone Smartphone Computer
Remote over Internet using browser -
receive iVote number by SMS or email X X

At interstate Venue over Internet using browser
iVote number provided in the system X X

Remote over PSTN using DMF phone - iVote
number by SMS or email or operator calling X X† X††

Remote over PSTN talking to an operator -
receive iVote number by SMS or email X X ?

Table 2. Methods and devices used for voting with iVote in 2015 († voter could use smartphone
as a telephone to vote but this is not recommended for security reasons; †† voter could use Skype
or similar VOIP service vote but this is not recommended for security reasons)

Official voting statistics for voter participation in iVote 2015 can be found
in Table 3. The statistics showed more than a 500% increase in the use of iVote
from 2011, confirming voters’ growing interest in the use of remote electronic
voting channels. About 1.7% of the votes cast were verified, and no complaint
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was made regarding the vote not matching the elector’s intent. Additionally, it
should be noted that the real failure rate of postal votes was over 600% higher
than iVote in 2015 and consistent with the pattern observed in 2011. It can be
concluded therefore that iVote is a more reliable channel for voting than postal
voting and offers a greater level of certainty.

iVote SGE 2011 SGE 2105
Votes % Votes %

Registered but voted some other way 2,756 5.4% 10,827 3.6%

iVoted 46,864 91.7% 283,669 94.6%

Registered but did not vote at all 1,483 2.9% 5,394 1.8%
Accepted iVote registrations 51,103 299,890

Postal Vote SGE 2011 SGE 2105
Votes % Votes %

Registered but voted some other way 34,709 11.0% 54,736 18.8%

Postal Voted 245,295 77.8% 203,577 69.9%

Registered but did not vote at all 35,178 11.2% 33,122 11.4%
Accepted Postal Vote registrations 315,182 291,435

Table 3. Evolution of electronic voting acceptance in NSW from iVote 2011 to iVote 2015

While the voting period of iVote 2015 was still running, a team of researchers
discovered a vulnerability [16], that potentially could allow a sophisticated at-
tacker to alter the voting client code running on the voter’s browser and modify
their intended voting options. Roughly speaking, it could be described as a Man-
in-the-Middle-Attack that leverages the FREAK vulnerability [3]. The latter was
publically disclosed two weeks before the election and was patched on the core
voting system servers but not on an associated Piwik monitoring server. Accord-
ing to [16], the attack works if a voter uses iVote from a malicious network (i.e.,
from a WiFi access point that has been infected by malware) which attackers
are monitoring. The researchers advised CERT Australia of the vulnerability at
2 pm on the 20th of March. This was despite the fact they knew about the vul-
nerability several days earlier and had advised the media of this vulnerability
during that period and prior to notifying CERT Australia. At around noon on
the 21st of March the Electoral Commission changed iVote to disable the code
which used the vulnerable server.
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From the point of view of the integrity and secrecy of the vote, the reported
attack’s potential damage is similar to having malware installed in the voter’s
device. The latter possibility was already taken into consideration when design-
ing iVote 2015, and the defence against it (regarding the integrity of the vote)
was the inclusion of a verification mechanism using DTMF phones. Detection
that a large scale attack was undertaken relied on the the absence of voters ad-
vising that their vote was not captured as intended after verification, which was
the case for iVote in 2015. Also the voting pattern for iVoters did not deviate
significantly from votes taken taken by other voting channels, again suggesting
that a large-scale attack was not performed and indeed giving increased confi-
dence that the votes were cast as intended and the correct candidates had been
elected.

6 Conclusions

In this paper we have presented a general description of the inner workings of
the iVote 2015 system, and we have introduced its new underlying cryptographic
voting protocol. iVote 2015 was used in the New South Wales State General
Election in March 2015, and received 283,669 votes, making it the biggest polit-
ically binding on-line election to date. iVote 2015 improved on the transparency,
integrity and verifiability properties of the voting and counting processes with
respect to the previous version run in 2011. In this paper we have presented the
cryptographic design used to provide the main properties desired, namely: voter
privacy, cast-as-intended verifiability and election integrity through audits from
independent observers.

The NSWEC contends that the use of iVote in conjunction with current pa-
per voting gives greater certainty in electoral outcome than in the past when only
paper ballots were used. The addition of a completely separate voting channel,
provided by iVote, allows a comparison of results between the electronic and
paper channels which, when aligning appropriately, will improve certainty in
the electoral outcome.

The iVote 2015 system does not support what is known as universal verifia-
bility [9], which states that anyone can verify that all recorded votes are properly
tallied. This is partly due to the choice of a symmetric authenticated encryption
(AE) scheme to encrypt the votes, that is inherited from the previous iVote 2011
design. Using an AE scheme prevents the re-randomisation of encrypted votes
that is normally needed to shuffle votes, which makes it harder to use the verifi-
able mix-nets technique that is in turn a building block for universally verifiable
voting systems [17]. The use of a symmetric encryption scheme for encrypting
the votes is motivated by the fact that in NSW, depending on the election, the



20 Ian Brightwell, Jordi Cucurull, David Galindo and Sandra Guasch

voting method known as “below the line” might imply choosing, in decreasing
order, a few hundred candidates, which makes it impractical to encode the vote
using a pure asymmetric encryption scheme (like ElGamal [6]). Another area of
future research would consist on finding a practical vote encoding that would be
supported by ElGamal.

It is envisaged that iVote will continue to replace postal voting and overseas
venues and may be used in the future to take absent votes at all pre-polls and
selected high volume polling places. This would mean iVote could take an extra
150,000 votes which would greatly reduce the large number of errors experi-
enced with absent vote handling. The implementation of iVote for these situa-
tions would use a verifiable paper trail rather than remote voting’s phone veri-
fication service. However, it is not envisaged that iVote will replace in-district
voting at polling places and pre-polls using paper ballots which currently rep-
resents over 80% of the votes taken at a general election.
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A Informal security analysis

We would like to briefly address, on an informal basis, the security concerns that
have guided the different cryptographic mechanisms that are included in iVote
2015 to provide cast-as-intended verifiability.
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Let us recall the existence of two different envelopes that contain the voter’s
choices:

– envelope for counting: C1 = [EncK(v),EncK(RN), A,B,C,D]
– envelope for verification: C2 = [EncK(v),EncK(RN), A,E, F,G]

AEK = (EncK(·),DecK(·)) stands for an authenticated encryption scheme
with an initialization vector, in our case AES-GCM 128 with 96 bit nonces.
Every encryption c = EncK(m) consists of three parts (e, t, IV ), where: e is
the proper encryption of the message m, from which inherits the length; t is the
authentication tag, with 128 bits; and IV is a randomly chosen 96-bit nonce.

A first key observation is that it is infeasible to find c,K,K ′ such that both
DecK(c) and DecK′(c) succeed, i.e. at least one these operations will output
an error symbol ⊥. This implies that, if c = EncK(m) was honestly generated,
then DecK′(c) 6= ⊥ only ifK = K ′, with overwhelming probability. Therefore,
every EncK(m) can be seen as a commitment toK. This is the basis of our Tally
and Verify algorithms.

Secondly, as there are two envelopes stored in different databases, we need
to ensure that they contain the same voting options v. Since efficient NIZKs for
AES-GCM are not yet available, we choose to ensure that the opening key K
that is encrypted in both envelopes is the same. This amounts to proving that the
same K is encrypted in both envelopes. This is achieved by the NIZKs π1, π2
and π3.

Thirdly, we use a random eXtension value X ∈ G in G = gH(RN) ·gRE ·K,
to prevent the Vote Encoder from computingK by brute-forcingRN (recall that,
for usability purposes, RN is a 10 digits number, and thus has low entropy). It
shall be noticed that more trust is placed in the Verification Server as regards
to the secrecy of the vote, since this server could brute-force its own ballot
database.

Finally, since the receipt number RN is also used to give evidence to the
voters that their ballot was decrypted, we need to ensure that allRN ’s are unique
in the Ballot Box. This is achieved by the voting client providingH(RN) to the
Vote Encoder, and thus we need the NIZK proof π4 to relate the encrypted RN
toH(RN).

A future area of research is a formal cast-as-intended verifiability analysis.

B Zero-Knowledge Proofs

The proof descriptions and implementations follow the Maurer’s unified proofs
setting [13]. For simplicity in notation, we will denoteH(RN) = J , besides the
existing A,B,C,E, F,G. Notation String means the constant string “String”.
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The operations are made in the ElGamal group G with q elements; G is a
hash function mapping strings to Zq.

π0: Transformation φ(r) : (g)→ (gr) = (A) = b

Proof:

– Compute w random in Zq.
– Compute t = φ(w) = (gw)

– Compute c = G(A, t, SchnorrProof:VoterID =id, ElectionEventID =eeID)

– Compute s = w + c · r

Proof is: s, c

Verification:

– Verify that s and c are between 1 and q − 1.
– Compute φ(s) = (gs)

– Compute t′ = φ(s) · b−c
– Compute c′ = G(A, t′, SchnorrProof:VoterID =id, ElectionEventID =eeID)

– Check that c′ = c

π1: Transformation φ(r) : (g,
∏i=3
i=1 hi) → (gr,

∏i=3
i=1(hi)

r) = (A, B·C·DG ) =
(b1, b2)

Proof:

– Compute w random in Zq.
– Compute (t1, t2) = φ(w) = (gw,

∏i=3
i=1(hi)

w)

– Compute c = G(A, B·C·DG , t1, t2, PlaintextProof)

– Compute s = w + c · r

Proof is: s, c

Verification:

– Verify that s and c are between 1 and q − 1.
– Compute φ(s) = (gs,

∏i=3
i=1(hi)

s) = (z1, z2)

– Compute (t′1, t
′
2) = (z1 · b−c1 , z2 · b−c2 )

– Compute c′ = G(A, B·C·DG , t′1, t
′
2, PlaintextProof)

– Check that c′ = c
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π2: Transformation φ(r) : (g, h3h4 )→ (gr, (h3h4 )
r) = (A, DE ) = (b1, b2)

Proof:

– Compute w random in Zq.
– Compute (t1, t2) = φ(w) = (gw, (h3h4 )

w)

– Compute c = G(A, DE , t1, t2,SimplePlaintextEqualityProof)

– Compute s = w + c · r

Proof is: s, c

Verification:

– Verify that s and c are between 1 and q − 1.
– Compute φ(s) = (gs, (h3h4 )

s) = (z1, z2)

– Compute (t′1, t
′
2) = (z1 · b−c1 , z2 · b−c2 )

– Compute c′ = G(A, DE , t
′
1, t
′
2, SimplePlaintextEqualityProof)

– Check that c′ = c

π3: Transformation φ(r,H(RN)) : (g, h2, h5, f) → (gr, hr2 · gH(RN), hr5 ·
fH(RN)) = (A,C, F ) = (b1, b2, b3)

Proof:

– Compute w1, w2 random in Zq.
– Compute (t1, t2, t3) = φ(w1, w2) = (gw1 , hw1

2 · gw2 , hw1
5 · fw2)

– Compute c = G(A,C, F, t1, t2, t3, PlaintextExponentEqualityProof)
– Compute s1 = w1 + c · r and s2 = w2 + c · H(RN)

Proof is: s1, s2, c

Verification:

– Verify that s1, s2 and c are between 1 and q − 1.
– Compute φ(s1, s2) = (gs1 , hs12 · gs2 , h

s1
5 · fs2) = (z1, z2, z3)

– Compute (t′1, t
′
2, t
′
3) = (z1 · b−c1 , z2 · b−c2 , z3 · b−c3 )

– Compute c′ = G(A,C, F, t′1, t′2, t′3, PlaintextExponentEqualityProof)
– Check that c′ = c
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π4: Transformation φ(r) : (g, h2)→ (gr, hr2) = (A, C
gJ
) = (b1, b2)

Proof:

– Compute w random in Zq.
– Compute (t1, t2) = φ(w) = (gw, hw2 )
– Compute c = G(A, C

gJ
, t1, t2,PlaintextProof)

– Compute s = w + c · r

Proof is: s, c

Verification:

– Verify that s and c are between 1 and q − 1.
– Compute φ(s) = (gs, hs2) = (z1, z2)
– Compute (t′1, t

′
2) = (z1 · b−c1 , z2 · b−c2 )

– Compute c′ = G(A, C
gJ
, t′1, t

′
2,PlaintextProof)

– Check that c′ = c

π5: Transformation φ(x1, x2) : (g,A)→ (h1, h
r
1, h2, h

r
2) = (h1,

B
K , h2,

C
gH(RN) ) =

(b1, b2, b3, b4)

Proof:

– Compute w1, w2 random in Zq.
– Compute (t1, t2, t3, t4) = φ(w1, w2) = (gw1 , Aw1 , gw2 , Aw2)
– Compute c = G(h1, BK , h2,

C
gH(RN) , t1, t2, t3, t4, DecryptionProof)

– Compute s1 = w1 + c · x1
– Compute s2 = w2 + c · x2

Proof is: s1, s2, c

Verification:

– Verify that s1, s2 and c are between 1 and q − 1.
– Compute φ(s1, s2) = (gs1 , As1 , gs2 , As2) = (z1, z2, z3, z4)
– Compute (t′1, t

′
2, t
′
3, t
′
4) = (z1 · b−c1 , z2 · b−c2 , z3 · b−c3 , z4 · b−c4 )

– Compute c′ = G(h1, BK , h2,
C

gH(RN) , t
′
1, t
′
2, t
′
3, t
′
4, DecryptionProof)

– Check that c′ = c




